Category: News

How to brew coffee with the Chemex coffee maker

guide for brewing coffee on the chemex

14 steps to the best coffee in the world.

Items Needed
  • Chemex
  • Fresh-Roasted Coffee
  • Water
  • Stainless Chemex Filter or paper filter (Stainless recommended)
  • A Pot or Kettle to Boil Water
  • Timer
  • Coffee Grinder
  • Scale (preferred)
Capacity of Chemex 8-Cup

Coffee

5-6 tbsp (36 grams)

Water

600 mL and some additional to rinse.
Preparation
  • Clean your Chemex as clean brewing equipment will always make a better cup.
  • For best results use fresh-ground coffee.  The bean traps in flavors and aromas that are released upon grinding.  Grind just before brewing for best results.
  • Goose neck kettles are preferred as they allow precise metered placement of the water into the coffee for maximum extraction of the coffee.
At 3 minutes and 45 seconds your chemex coffee is done brewing
Step 1

Prepare your Chemex brewing equipment.  While we recommend using a stainless steel filter, you may use paper as well.

Continue reading

Continue reading

How to brew coffee with the French Press coffee maker

French Press Brewing Guide

16 steps to the best coffee in the world.

Items Needed
  • French Press
  • Fresh-Roasted Coffee
  • Water
  • Spoon or Stirring Stick
  • A Pot or Kettle to Boil Water
  • Timer
  • Coffee Grinder
  • Scale (preferred)
Capacity of French Press 3-Cup 4-Cup 8-Cup

Coffee

2-3 tbsp (17 grams)
4-5 tbsp (27 grams)
8-10 tbsp (54 grams)

Water

275 mL and some additional to pre-heat the French Press
430 mL and some additional to pre-heat the French Press
860 mL and some additional to pre-heat the French Press
Preparation
  • Clean your french press as clean brewing equipment will always make a better cup.
  • For best results use fresh-ground coffee.  The bean traps in flavors and aromas that are released upon grinding.  Grind just before brewing for best results.
Setup your french press, coffee and brewing equipment
Step 1

Prepare your equipment for brewing with your French Press.  Here we have laid out our 8-cup french press, and we’ve gone ahead and pre-measured out 54 grams of beans for the brew.  An electric tea-kettle is easy and efficient and this one we purchased on Amazon for just $19.  The goose neck spout makes pouring easy and precise.

Continue reading

Continue reading

How you can learn to drink black coffee and love it.

How to learn to drink black coffee and love it

9 Steps to learning to enjoy black coffee.

Why do people drink black coffee anyway?  You may not believe it if you’re not yet a black coffee drinker, but it’s because people love it!  You can too… 

Black coffee has long enjoyed a reputation in that it’s meant to be drunk by burly men, and that it will put hair on your chest.  It’s often the holy grail of the coffee lover, to drink black coffee and enjoy it.  But the reality is that most people just don’t like the way that it tastes.  Why is this?  Can black coffee truly taste good?  Can you develop a taste for black coffee?  The answer is a resounding “Yes”!  Here we will teach you some background knowledge in what it takes to make a good black coffee, and 9 steps you can put into practice so that even you can learn to love it.

Learn to Drink Black Coffee

How does black coffee taste?

Much like a fine wine, black coffee can taste amazing and it can also be arguably not so great in other cases.  Let’s have a look at why.

I don't care for black coffee because it tastes bitter or sour...

Continue reading

Continue reading

What happens if your grill isn’t powerful enough for roasting, BTU vs. Mass explained

The case of the thimble, a 5 gallon bucket and what any of this has to do with coffee roasting.

One of the most commonly misunderstood concepts is the heat required to roast a <insert LB’s of coffee here> pound mass of coffee.  While we have come up with the following guidelines, some people don’t understand why we have arrived at those numbers.  It’s true the numbers are slightly arbitrary in the sense that we don’t have measured science behind it, but they’re also based on a significant amount of testing, and are designed to give you plenty of extra heat\speed in roasting if you need it.

I recall at one point one guy saying… “Hey, my grill is 28,000 BTU and I have no problem getting to 650F, so why can’t I roast 8LB?”  We in fact, recommend 45,000 BTU, so what’s wrong with his claim?

See, BTU is a measurement of heat output, not necessarily temperature output.  Let me provide the following analogy to best illustrate the point.

“A candle produces approximately 100 BTU\hour.”  

 

THE EXPERIMENT:

Imagine if you took a thimble, the little thing you use for sewing, placing it onto your finger.  I use this as an example of a little tiny cup.  Imagine if this cup were filled with water and placed over a common candle.  Do you think this water in the thimble is capable of boiling?

 

 

“Imagine you have a thimble filled with water, do you think it would boil placed over a candle?”

 

What’s interesting about this experiment is that you have an analogy that’s easy for all of us to understand based on common everyday experience.  I imagine in certain cases, the water might not boil, but I think most of us would agree the answer is “yes, the water in the thimble would boil”.  After all, we’re talking about a very small amount of material that is heating up.  This material, what we will call the “mass” is the thimble and the water.

 

“1 BTU is the amount of heat energy needed to raise 1LB of water by 1 degree Fahrenheit.”

 

 

Now imagine if you take 5 gallons of water and you place it over the same candle in the previous thimble experiment, do you think the water would boil?

 

“Do you think a 5 gallon bucket of water would boil placed over a candle?”

 

 

Most of us would say “no” this water will not boil in a 5 gallon bucket.  Why do you suppose this is true?  In both cases the candle, which burns an average 2372-2552 °F is the same in both experiments?  So what’s happening here and what does it have to do with coffee roasting?

 

In the second experiment, the mass that we are heating up is the bucket and the 5 gallons of water.  If the water heats up, it will heat up relatively little.  What happens is that the entire mass (the bucket and the 5 gallons of water) is absorbing the relatively small amount of heat input from the candle, then what heat energy is absorbed dissipates into the environment before the water heats up to any appreciable degree.  You can imagine an even more exaggerated experiment by trying to heat up a swimming pool with a candle.

 

So you see, as mass increases…. you need more and more heat input to be able to bring the mass to the desired temperature.  How then does this translate when roasting coffee?  Well, it’s exactly the same.  Instead of a thimble or a bucket, we have a drum.  Instead of water we have beans that contain water.  The larger the mass grows (2LB drum up to 12LB drums) the more heat input you have to have.  The flame temperature might be the same, but the capacity to input heat increases.  This is the BTU number.  Think of this as 50 candles under the 5 gallon bucket of water, and now we might have something to talk about.

 

In a real life example, we tried to get an 8LB drum to roast 8 pounds in a 28,000 BTU grill.  This grill, when empty had no problem heating up to 650-700F.  But the moment you add a bunch of mass to the grill, (much like going to the 5 gallon bucket of water over the candle) that same grill with 8LB of coffee, struggled to get above 175F.  You could roast 1-2LB in this scenario, but not 8LB.

 

We then later realized we needed to trap as much heat as possible and keep it in the grill.  We used sheet metal to cap off every hole we could find in the grill.  The result was that we barely achieved 600F by trapping every ounce of heat.  The roast finished at 22 minutes, which is a pinch longer than our ideal.  This could be considered a success, but this was literally with 100% gas on the burners.  If one needed to go faster, the heat simply isn’t there.  At 45,000 BTU you’ll have more than enough head room, even at 8LB to speed up the roast by increasing heat if you should need to.

 

This is a real life example of how BTU plays out when dealing with increased mass.    The more mass you have (the larger your roast)..the more heat output (BTU) you need to finish the roast on time.  Now this “on time” is key.  In the above example of the 8LB roast, where we capped off all the holes, this was trapping enough heat to get the roast to finish on time.  We could have left the vents uncovered andlost a bunch of heat, roasted at 350 for 45 minutes and finished the roast.  The roast would have tasted terrible, but it would have finished.  The trapping of the heat allows us to finish on time and speed up the whole reaction.

 

So in summary, More mass requires more BTU to get the coffee to finish with sufficiently short time.  If you sacrifice any of these, the variables change and you can find greater degrees of success.   For example, if you struggle with BTU, you can lower your mass…or lengthen your roast (not ideal), or you can supply more heat to compensate.  Hopefully this sheds light on a complicated subject, which hopefully now makes a little more sense.

Shane-RK

 

 

Manual Hand Crank Rotisserie Available (Manual)

These manual rotisseries are ideal if you plan not to use a motor, for if you are roasting manually for show, or for other reasons.  Buy this if you don’t plan to use a motor or wish to use a motor at a later time.

It’s a bit more expensive than the standard rotisserie due to the number of steps to fabricate, as well as the materials involved to make it functional.  Note that the crank handle is a turning handle and the main shaft handle is fixed for easy grip.